Translate into a different language

Wednesday, July 06, 2016

Preparing Teachers for Next Generation Science Standards | Education Week

Photo:Lauren Madden
Lauren Madden, assistant professor of elementary education at the College of New Jersey, in Ewing, N.J. writes, "As a faculty member at the College of New Jersey, I wear many hats. Most importantly, I prepare college students to become pre-K-12 science teachers. Since the fall of 2013, I have been using the Next Generation Science Standards, or NGSS, to frame my courses so that my students can learn how to use them in their teaching." 

An NGSS-Informed 2nd Grade Lesson

These common science standards, adopted in 18 states and the District of Columbia, set clear, high expectations for what students should know about science and how they should use that knowledge to make sense of the world around them. These standards are a powerful tool that can ignite the best teaching from teachers and facilitate deep learning for their students.

Earlier science standards, both in my home state of New Jersey and across the nation, addressed science content separately from the act of doing science. The Next Generation standards take a different approach. Each performance expectation within the standards includes three dimensions: science and engineering practices, disciplinary core ideas, and crosscutting concepts. This multifaceted view shifts away from the notion that science is simply a collection of facts and toward a deeper understanding of the broad and connected nature of scientific phenomena. 

This integrated approach to science teaching and learning may seem unfamiliar, and it certainly requires a shift in planning and teaching for many teachers and schools. But the ideas embraced by the NGSS, such as grounding science instruction in the act of doing science, have long been seen as best practices in education. Many science educators agree that the standards simply delineate what good science teaching looks like.

Emphasizing the connectedness of ideas is a central practice at the prekindergarten, kindergarten, 1st grade, and 2nd grade levels. For example, in a typical kindergarten thematic unit on "moving," children might explore how many things around them—from toy cars to leaves on plants to animals—move, along with the factors that influence that motion. Using observations as a springboard, the teacher can guide students to the concept that forces are pushes and pulls, and that we see forces at work in all domains of science and everyday life. This emphasis on the overarching idea highlights the connectedness of scientific phenomena and is the way that many students of all ages learn science content best. This type of unit is also an ideal place to introduce my students—who will soon teach science themselves—to the crosscutting concepts of the NGSS.

Source: Education Week

If you enjoyed this post, make sure you subscribe to my Email Updates!