Translate to multiple languages

Subscribe to my Email updates

https://feedburner.google.com/fb/a/mailverify?uri=helgeScherlundelearning
Enjoy what you've read, make sure you subscribe to my Email Updates

Wednesday, August 05, 2015

Teach Your Robot to Do the Dishes by Mark Harris

Follow on Twitter as @meharris
"Adaptive, responsive strategies let humans think they’re in charge when working on mundane tasks with robots." according to Mark E. Harris, award-winning freelance journalist originally from the U.K.

Photo: MIT Technology Review

Roomba has a new friend. Researchers have developed a robot that can help clean the kitchen.

In a paper presented at Robotics Science and Systems in Rome in July, scientists at the University of Wisconsin-Madison describe how they taught a Kinova Mico robot arm to help people do the dishes. The key, apparently, is slowing down and letting human team members take charge. “We want robots to follow our lead, or at least plan their actions with an awareness of ours,” says Bilge Mutlu, associate professor of computer science, psychology, and industrial engineering and an author of the paper.

It’s all about collaboration. The researchers started by getting the robot to watch humans handing each other plates from a drying rack and stacking them on shelves. A Kinect sensor tracked the speed and position of the givers’ and receivers’ arms during the handover. The scenario was then repeated with the receiver working much more slowly, having to solve a short mathematical problem before shelving the plate. This forced the giver to adapt his actions to the receiver’s availability.

The researchers analyzed data from eight human teams, and found that people use a combination of two methods for coping with a sluggish colleague. Some wait until their partner is ready for the next dish, others simply slow down to fill the extra time.

Mutlu installed the robot as giver and, using the Kinect again, monitored its human partners’ performance. The algorithm managed to predict when a user was ready for the next dish with an accuracy of over 90 percent. The researchers then programmed the robot to respond with three different strategies.
Read more... 

Source: MIT Technology Review