Translate to multiple languages

Subscribe to my Email updates

https://feedburner.google.com/fb/a/mailverify?uri=helgeScherlundelearning
Enjoy what you've read, make sure you subscribe to my Email Updates

Wednesday, September 30, 2020

How a Memory Quirk of the Human Brain Can Galvanize | Artificial Intelligence - Singularity Hub

Shelly Xuelai Fan, neuroscientist-turned-science writer emphasiz, Even as toddlers we’re good at inferences. 

Memory AI
Photo: Singularity Hub

Take a two-year-old that first learns to recognize a dog and a cat at home, then a horse and a sheep in a petting zoo. The kid will then also be able to tell apart a dog and a sheep, even if he can’t yet articulate their differences.

This ability comes so naturally to us it belies the complexity of the brain’s data-crunching processes under the hood. To make the logical leap, the child first needs to remember distinctions between his family pets. When confronted with new categories—farm animals—his neural circuits call upon those past remembrances, and seamlessly incorporate those memories with new learnings to update his mental model of the world.

Not so simple, eh?...

Meeting of Minds
These results are hardly the first to tap into the brain’s memory prowess.

Previously, AI researchers have also tuned into a separate memory process called metaplasticity, which alters how likely a neural network is to be vulnerable to change. Because memories are stored in a neural network, the more flexible it is, the more likely the memory can be altered or forgotten. Google DeepMind, for example, has used an artificial version of this brain quirk to help “protect” artificial synapses that are key to preserving a previous memory while encoding the next. 

Read more...

Source: Singularity Hub