Making individual predictions from collective characteristics is a risky business. Photo: Ben Wiseman |
Eddleston’s daughter, concerned for his health, called their family doctor, a well-respected local man named Harold Shipman. He came to the house, sat with her father, held his hand, and spoke to him tenderly. Pushed for a prognosis as he left, Shipman replied portentously, “I wouldn’t buy him any Easter eggs.” By Wednesday, Eddleston was dead; Dr. Shipman had murdered him.
Harold Shipman was one of the most prolific serial killers in history. In a twenty-three-year career as a mild-mannered and well-liked family doctor, he injected at least two hundred and fifteen of his patients with lethal doses of opiates. He was finally arrested in September, 1998, six months after Eddleston’s death.
David Spiegelhalter, the author of an important and comprehensive new book, “The Art of Statistics” (Basic), was one of the statisticians tasked by the ensuing public inquiry to establish whether the mortality rate of Shipman’s patients should have aroused suspicion earlier. Then a biostatistician at Cambridge, Spiegelhalter found that Shipman’s excess mortality—the number of his older patients who had died in the course of his career over the number that would be expected of an average doctor’s—was a hundred and seventy-four women and forty-nine men at the time of his arrest. The total closely matched the number of victims confirmed by the inquiry...
Raffray learned the hard way that people are not well represented by the average. As the mathematician Ian Stewart points out in “Do Dice Play God?” (Basic), the average person has one breast and one testicle. In large groups, the natural variability among human beings cancels out, the random zig being countered by the random zag; but that variability means that we can’t speak with certainty about the individual—a fact with wide-ranging consequences...
Drawing an arbitrary line in the sand creates an illusion that we can divide the true from the false. But the results of a complicated experiment cannot be reduced to a yes-or-no answer. Back when Spiegelhalter was asked to determine whether Dr. Harold Shipman’s mortality rate should have aroused suspicion earlier, he swiftly decided that the standard test of statistical significance would be a “grossly inappropriate” way to monitor doctors. The medical profession would effectively be pointing the finger of suspicion at one in every twenty innocent doctors—thousands of clinicians in the U.K. Doctors would be penalized for treating higher-risk patients.
Read more...
Source: The New Yorker.