Translate to multiple languages

Subscribe to my Email updates

https://feedburner.google.com/fb/a/mailverify?uri=helgeScherlundelearning
Enjoy what you've read, make sure you subscribe to my Email Updates

Thursday, May 14, 2015

A First Big Step Toward Mapping the Human Brain

Photo: Katie M. Palmer
"It’s a long, hard road to understanding the human brain, and one of the first milestones in that journey is building a … database." according to Katie M. Palmer, associate editor covering science and health. 


Neurons in the database are mapped in 3D space. Allen Institute for Brain Science. 
Photo: Wired

In the past few years, neuroscientists have embarked on several ambitious projects to make sense of the tangle of neurons that makes the human experience human, and an experience. In the UK, Henry Markram—the Helen Cho to Elon Musk’s Tony Stark—is leading the Human Brain Project, a $1.3 billion plan to build a computer model of the brain. In the US, the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative hopes to, in its own nebulous way, map the dynamic activity of the noggin’s 86 billion neurons.

Now, the Allen Institute for Brain Science, a key player in the BRAIN Initiative, has launched a database of neuronal cell types that serves as a first step toward a complete understanding of the brain. It’s the first milestone in the Institute’s 10-year MindScope plan, which aims to nail down how the visual system of a mouse works, starting by developing a functional taxonomy of all the different types of neurons in the brain.

“The big plan is to try to understand how the brain works,” says Lydia Ng, director of technology for the database. “Cell types are one of the building blocks of the brain, and by making a big model of how they’re put together, we can understand all the activity that goes into perceiving something and creating an action based on that perception.”

The Allen Cell Types Database, on its surface, doesn’t look like much. The first release includes information on just 240 neurons out of hundreds of thousands in the mouse visual cortex, with a focus on the electrophysiology of those individual cells: the electrical pulses that tell a neuron to fire, initiating a pattern of neural activation that results in perception and action. But understanding those single cells well enough to put them into larger categories will be crucial to understanding the brain as a whole—much like the periodic table was necessary to establish basic chemical principles.
Read more...

Source: Wired