A First Course in Differential Geometry |
Differential geometry is the study of curved spaces using the techniques of calculus. It is a mainstay of undergraduate mathematics education and a cornerstone of modern geometry. It is also the language used by Einstein to express general relativity, and so is an essential tool for astronomers and theoretical physicists...
It includes many exercises to test students' understanding of the material, and ends with a supplementary chapter on minimal surfaces that could be used as an extension towards advanced courses or as a source of student projects.
- Explains some of the main classical highlights of the geometry of surfaces (Theorema Egregium, geodesics, Gauss–Bonnet Theorem) using a minimal amount of theory, while presenting some advanced material suitable for self-study at the end
- Builds up geometric intuition by providing many examples to illustrate definitions and concepts, and drawing analogies with real-life experiences
- Includes many exercises at the end of each chapter. Students can challenge their understanding of the contents through problem solving, and brief solutions are given to about a third of the exercises
Enjoy reading this mathematic book!
Source: Cambridge University Press