Translate to multiple languages

Subscribe to my Email updates

https://feedburner.google.com/fb/a/mailverify?uri=helgeScherlundelearning
If you enjoyed these post, make sure you subscribe to my Email Updates

Thursday, February 21, 2019

Big data is being reshaped thanks to 100-year-old ideas about geometry | Science + Technology - The Conversation - UK

Photo: Ittay Weiss
Techniques from topology can help us understand DNA and improve drug development, explains Ittay Weiss,  Lecturer in Mathematics at the University of Portsmouth.
 
Photo: Elesey/Shutterstock

Your brain is made up of billions of neurons connected by trillions of synapses. And how they’re arranged gives rise to the brain’s functionality and to your personality. That’s why scientists in Switzerland recently produced the first-ever digital 3D brain cell atlas, a complete mapping of the brain of a mouse. While this is a colossal achievement, the great challenge now lies in learning to decipher the atlas. And it’s a huge one.

Science is full of this kind of problem: how to turn large amounts of information into useful insight. For many years, researchers relied on mathematics and statistics to explore data. The explosion of large datasets created by digital storage, the internet, and cheap sensors has led to the development of new techniques designed specifically to deal with this “big data”.

And now there is an emerging new approach based on century-old ideas that’s producing superior tools for understanding certain types of big data. Using the mouse’s brain as an example, its physical shape determines its functionality. But a precise description of this shape, which we now have, doesn’t automatically reveal everything about how the brain works. 

Behind the physical shape lies a more abstract shape formed by the interconnections within the brain. Capturing aspects of this shape by applying techniques from the study of what’s known as “topology” can help reveal a deeper understanding of the brain’s functioning. This same guiding principle of using topological techniques on big data also has applications in drug development and other cutting-edge endeavours...

Millions of years ago, evolution was confronted with a similar problem. DNA in cells is a molecule composed of two coiled up chains. Each chain is a very long wire, built up from a sequence of small molecules called nucleobases. When a cell divides, these wires unwind, replicate and then coil up again. But just like wires in a bag, the strands of DNA can become tangled, which prevents the cell from dividing and causes it to die.
Read more... 

Source: The Conversation - UK