Photo: Analytics India Magazine |
So, in many instances, researchers working to train advanced AI/ML models are restricted by both the quality and the amount of data. So, on the off chance that you need to show a vehicle to drive itself, you will require a great many miles of human driving data. On the other hand, with the help of simulation just as humans do in their brains, researchers can create a great many training data sets and come up with innovative models...
Reinforcement Learning In Conjunction With Simulation
An algorithm in order to devise an intelligent policy needs to experience a multitude of experience, running in millions of parameters. In a situation where there is a lack of data, simulation is what allows it to do that. Over the past few years, we have started seeing superhuman accuracy coming out of machine learning algorithms in a wide variety of complex problems.
Read more...
Source: Analytics India Magazine