Translate into a different language

Tuesday, November 29, 2016

Google’s Hand-Fed AI Now Gives Answers, Not Just Search Results | WIRED

Photo: Cade Metz
"Ask the Google search app “What is the fastest bird on Earth?,” and it will tell you." according to Cade Metz, WIRED senior staff writer covering Google, Facebook, artificial intelligence, bitcoin, data centers, computer chips, programming languages, and other ways the world is changing. 

Photo: Krisztian Bocsi/Bloomberg/Getty Images

“Peregrine falcon,” the phone says. “According to YouTube, the peregrine falcon has a maximum recorded airspeed of 389 kilometers per hour.”

That’s the right answer, but it doesn’t come from some master database inside Google. When you ask the question, Google’s search engine pinpoints a YouTube video describing the five fastest birds on the planet and then extracts just the information you’re looking for. It doesn’t mention those other four birds. And it responds in similar fashion if you ask, say, “How many days are there in Hanukkah?” or “How long is Totem?” The search engine knows that Totem is a Cirque de Soleil show, and that it lasts two-and-a-half hours, including a thirty-minute intermission.

Google answers these questions with the help from deep neural networks, a form of artificial intelligence rapidly remaking not just Google’s search engine but the entire company and, well, the other giants of the internet, from Facebook to Microsoft. Deep neutral nets are pattern recognition systems that can learn to perform specific tasks by analyzing vast amounts of data. In this case, they’ve learned to take a long sentence or paragraph from a relevant page on the web and extract the upshot—the information you’re looking for.

These “sentence compression algorithms” just went live on the desktop incarnation of the search engine. They handle a task that’s pretty simple for humans but has traditionally been quite difficult for machines. They show how deep learning is advancing the art of natural language understanding, the ability to understand and respond to natural human speech. “You need to use neural networks—or at least that is the only way we have found to do it,” Google research product manager David Orr says of the company’s sentence compression work. “We have to use all of the most advanced technology we have.”

Not to mention a whole lot of people with advanced degrees. Google trains these neural networks using data handcrafted by a massive team of PhD linguists it calls Pygmalion. In effect, Google’s machines learn how to extract relevant answers from long strings of text by watching humans do it—over and over again. These painstaking efforts show both the power and the limitations of deep learning. To train artificially intelligent systems like this, you need lots and lots of data that’s been sifted by human intelligence. That kind of data doesn’t come easy—or cheap. And the need for it isn’t going away anytime soon.
Read more...

Source: WIRED


If you enjoyed this post, make sure you subscribe to my Email Updates!

0 comments: