Photo: Knowridge Science Report |
Now, two researchers, at Georgetown University Medical Center and Stanford University, have developed a theory of how developmental “math disability” occurs.
The article, in a special issue on reading and math in Frontiers in Psychology, proposes that math disability arises from abnormalities in brain areas supporting procedural memory.
Procedural memory is a learning and memory system that is crucial for the automatization of non-conscious skills, such as driving or grammar.
It depends on a network of brain structures, including the basal ganglia and regions in the frontal and parietal lobes.
The procedural memory system has previously been implicated in other developmental disorders, such as dyslexia and developmental language disorder, say the study’s senior researcher, Michael T. Ullman, PhD, professor of neuroscience at Georgetown.
“Given that the development of math skills involves their automatization, it makes sense that the dysfunction of procedural memory could lead to math disability.
In fact, aspects of math that tend to be automatized, such as arithmetic, are problematic in children with math disability.
Moreover, since these children often also have dyslexia or developmental language disorder, the disorders may share causal mechanisms,” he says.
The study’s lead author, Tanya M. Evans, PhD, who specializes in reading and math, was a graduate student at Georgetown. Evans is currently a postdoctoral research fellow at Stanford University.
Ullman says that their theory, called the procedural deficit hypothesis of math disability, “offers a powerful, brain-based approach for understanding the disorder, and could help guide future research.”
The paper shows that previous findings are consistent with the theory, and lays out specific predictions that can be thoroughly tested through subsequent research.
Read more...
Additional resources
Georgetown University Medical Center
Source: Knowridge Science Report