Translate to multiple languages

Subscribe to my Email updates

https://feedburner.google.com/fb/a/mailverify?uri=helgeScherlundelearning
Enjoy what you've read, make sure you subscribe to my Email Updates

Saturday, March 07, 2020

Showing robots how to do your chores | Robots - The MIT Tech

By observing humans, robots learn to perform complex tasks, such as setting a table by Rob Matheson, Writer (computer science and technology).

Roboticists are developing automated robots that can learn new tasks solely by observing humans. At home, you might someday show a domestic robot how to do routine chores.
Photo: Christine Daniloff, MIT
Training interactive robots may one day be an easy job for everyone, even those without programming expertise. Roboticists are developing automated robots that can learn new tasks solely by observing humans. At home, you might someday show a domestic robot how to do routine chores. In the workplace, you could train robots like new employees, 
showing them how to perform many duties.

Making progress on that vision, MIT researchers have designed a system that lets these types of robots learn complicated tasks that would otherwise stymie them with too many confusing rules. One such task is setting a dinner table under certain conditions.  

At its core, the researchers’ “Planning with Uncertain Specifications” (PUnS) system gives robots the humanlike planning ability to simultaneously weigh many ambiguous — and potentially contradictory — requirements to reach an end goal. In doing so, the system always chooses the most likely action to take, based on a “belief” about some probable specifications for the task it is supposed to perform...

Following criteria
The researchers also developed several criteria that guide the robot toward satisfying the entire belief over those candidate formulas. One, for instance, satisfies the most likely formula, which discards everything else apart from the template with the highest probability. Others satisfy the largest number of unique formulas, without considering their overall probability, or they satisfy several formulas that represent highest total probability. Another simply minimizes error, so the system ignores formulas with high probability of failure.

Designers can choose any one of the four criteria to preset before training and testing. Each has its own tradeoff between flexibility and risk aversion. The choice of criteria depends entirely on the task. In safety critical situations, for instance, a designer may choose to limit possibility of failure. But where consequences of failure are not as severe, designers can choose to give robots greater flexibility to try different approaches. 

Read more...

Source: The MIT Tech