Photo: Daniel Andrés Díaz-Pachón |
Photo: JumpStory |
Photo: David Hilbert |
It was August 1900 in Paris. David Hilbert (1862–1943), one of the best-known mathematicians of his time (right), posed a list of twenty-three open problems.
The impact was huge; much of the mathematical research of the dawning century was consumed by Hilbert’s problems. Nobel Prize winners, Fields medalists, and winners of other prestigious awards were among those who worked to solve them. Some of them (the Riemann hypothesis, for instance) remain unsolved. Large sums of money are offered for a successful solution.
Nineteen hundred was felt to be a significant year. The Dark Ages were past; the Enlightenment had come. The Scientific Revolution had brought progress. God was dead, now the Superman (Friedrich Nietzsche’s Übermensch) lived. The universe, with its infinite history, did not require a God. Darwin had proposed a mechanism through which all biological species have merely emerged...
In the end, we do not know whether the edifice we are building will be consistent; we do not have the least idea. We just hope it will be, and we must believe it will be in order to continue doing mathematics. Faith is the most fundamental of the mathematical tools...
It is sad to see that many a Christian apologist has placed his faith in logic, not in the Logos. At the end of the day, logic does not prove anything because it is grounded in unprovable propositions. It is impossible to use Aristotelian logic to prove Aristotelian logic. It begs the question; to accept it requires faith. Axioms are undemonstrable by definition and, as theory develops, they become less and less intuitive. To accept them requires faith. Similarly, the consistency of any formal axiomatic system cannot be proven, to accept it requires faith. All of our knowledge is sustained by faith. All of it.
Read more...
Source: Walter Bradley Center for Natural and Artificial Intelligence