Photo: Noah Gift |
Photo: Getty Images |
What do Russian trolls, Facebook, and US elections have to do with machine learning? Recommendation engines are at the heart of the central feedback loop of social networks and the user-generated content (UGC) they create. Users join the network and are recommended users and content with which to engage. Recommendation engines can be gamed because they amplify the effects of thought bubbles. The 2016 US presidential election showed how important it is to understand how recommendation engines work and the limitations and strengths they offer.
AI-based systems aren’t a panacea that only creates good things; rather, they offer a set of capabilities. It can be incredibly useful to get an appropriate product recommendation on a shopping site, but it can be equally frustrating to get recommended content that later turns out to be fake (perhaps generated by a foreign power motivated to sow discord in your country).
This chapter covers recommendation engines and natural language processing (NLP), both from a high level and a coding level. It also gives examples of how to use frameworks, such as the Python-based recommendation engine Surprise, as well as instructions how to build your own. Some of the topics covered including the Netflix prize, singular-value decomposition (SVD), collaborative filtering, real-world problems with recommendation engines, NLP, and production sentiment analysis using cloud APIs.
Read more...
Related link
Pragmatic AI: An Introduction to Cloud-Based Machine Learning |
"Pragmatic AI will help you solve real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools..."
Source: InfoWorld