Photo: JumpStory |
But what exactly makes one knot more stable than another has not been well-understood, until now.
MIT mathematicians and engineers have developed a mathematical model that predicts how stable a knot is, based on several key properties, including the number of crossings involved and the direction in which the rope segments twist as the knot is pulled tight.
“These subtle differences between knots critically determine whether a knot is strong or not,” says Jörn Dunkel, associate professor of mathematics at MIT. “With this model, you should be able to look at two knots that are almost identical, and be able to say which is the better one.”
“Empirical knowledge refined over centuries has crystallized out what the best knots are,” adds Mathias Kolle, the Rockwell International Career Development Associate Professor at MIT. “And now the model shows why.”
Dunkel, Kolle, and PhD students Vishal Patil and Joseph Sandt have published their results today in the journal Science...
This research was supported, in par,t by the Alfred P. Sloan Foundation, the James S. McDonnell Foundation, the Gillian Reny Stepping Strong Center for Trauma Innovation at Brigham and Women’s Hospital, and the National Science Foundation.
Read more...
Additional resources
Science 03 Jan 2020:
Vol. 367, Issue 6473, pp. 71-75
DOI: 10.1126/science.aaz0135
Source: MIT News