Translate into a different language

Sunday, June 26, 2016

Artificial Intelligence’s White Guy Problem | SundayReview - New York Times

Photo: Kate Crawford
Kate Crawford, principal researcher at Microsoft and co-chairwoman of a White House symposium on society and A.I. insist,  "ACCORDING to some prominent voices in the tech world, artificial intelligence presents a looming existential threat to humanity: Warnings by luminaries like Elon Musk and Nick Bostrom about “the singularity” — when machines become smarter than humans — have attracted millions of dollars and spawned a multitude of conferences.

Photo: New York Times

But this hand-wringing is a distraction from the very real problems with artificial intelligence today, which may already be exacerbating inequality in the workplace, at home and in our legal and judicial systems. Sexism, racism and other forms of discrimination are being built into the machine-learning algorithms that underlie the technology behind many “intelligent” systems that shape how we are categorized and advertised to.

Take a small example from last year: Users discovered that Google’s photo app, which applies automatic labels to pictures in digital photo albums, was classifying images of black people as gorillas. Google apologized; it was unintentional.

But similar errors have emerged in Nikon’s camera software, which misread images of Asian people as blinking, and in Hewlett-Packard’s web camera software, which had difficulty recognizing people with dark skin tones.

This is fundamentally a data problem. Algorithms learn by being fed certain images, often chosen by engineers, and the system builds a model of the world based on those images. If a system is trained on photos of people who are overwhelmingly white, it will have a harder time recognizing nonwhite faces.

A very serious example was revealed in an investigation published last month by ProPublica. It found that widely used software that assessed the risk of recidivism in criminals was twice as likely to mistakenly flag black defendants as being at a higher risk of committing future crimes. It was also twice as likely to incorrectly flag white defendants as low risk.

The reason those predictions are so skewed is still unknown, because the company responsible for these algorithms keeps its formulas secret — it’s proprietary information. Judges do rely on machine-driven risk assessments in different ways — some may even discount them entirely — but there is little they can do to understand the logic behind them.

Source: New York Times

If you enjoyed this post, make sure you subscribe to my Email Updates!